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Flow of an inviscid fluid past a sphere in a pipe 

By WE1 LA1 
Rensselaor Polytechnic Institute, Troy, New York 

(Received 19 August 1963) 

1. Introduction 
The problem of flow of an inviscid, incompressible fluid inside a circular pipe, 

with a sphere on the axis of the pipe, has been studied by Lamb (1936) (irrota- 
tional flow), Long (1953) and Fraenkel (1956) (swirling flow). Because of the 
difficulty of satisfying all the boundary conditions in the problem, only approxi- 
mate solutions, valid for spheres of small diameter (compared with that of the 
pipe) have been obtained. In  this paper, it  is found that by introducing a vortex 
sheet over a segment of the diameter of the sphere, flow patterns can be obtained 
by an inverse method for the case of large spheres. Four different types of flow 
are considered: (1) n;%ational flow, (3) swirling flow with constant axial and 
angular velocities far upstream, without lee waves, (3) swirling flow with constant 
axial and angular velocities far upstream, with lee waves, and (4) rotational 
flow with a paraboloidal velocity distribution far upstream. 

2. Governing equations 
Cylindrical co-ordinates ( r ,  8, z )  will be used. In  these co-ordinates, the 

velocity components will be denoted by u, v and w, respectively. The equations 
of motion for steady flow are, neglecting viscosity, 

where x is the axis of symmetry, p the (constant) density, and !2 the potential of 
the external forces (gravity). The equation of continuity for an incompressible 

(4) 
a(ru) a(rw) fluid is 
-+- = 0. 

ar aZ 
Equation (4) permits the use of the Stokes stream function y?, in terms of which 
the velocity components become 
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Equation ( 2 )  expresses the conservation of angular momentum because i t  can 
be written as 

a(rv) a(rv) = 0. 
“-+W- 

ar aZ 

(rv)2 = f ($1. (6) 

Consequently rv is a function of alone. For convenience we take 

Furthermore, equations (1) and (3) can be written as 

and 

and 

From equations ( 7 )  and (8) ,  together witl. 23e continuity equation (4), we have 

Therefore, x also is a function of II. alone, say 

x = H(II..)- 
Using equation ( 5 ) ,  and noting that 

we can write equations (7) and (8) as 

aH($F) - 1 a f ( $ )  

__. am$) - 1 3f(II.) 1 al// 
ar zr2 ar r Z” 

ax 2r2 az r ax’. 
Multiplying (13) by dr ,  (14) by dz, and adding, we get 

Since 

(12)  

Equation (15) is the equation governing all the cases mentioned in the intro- 
duction. It was derived originally by Long (1953). I€($) and f ( $ )  are to be deter- 
mined from the conditions far upstream. 
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Case 1. The upstream conditions in this case are characterized by 

w = W(const.), u = u = 0. 

Thus ifW = +r2W and H($)  = f($) = 0. 

The governing equation is 
az+ a2$ l a @  -+------=0 
az2 a+ r a7 
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Cases 2 and 3. The upstream conditions are characterised by 

w = W (const.), 

y9m = +r2 W, f ($) = r2w2 = r4w2 = c2$2, 

u = 0, ulr = w (const.). 
Thus 

where CT, the reciprocal of a Rossby number, is 2w/ W, 

H (  $) = &( W2 + v2) + (pm/p + !2) = +( W2 + v2) + +v2, 

and dH d d 
- -us = -(3$w2/W) = &+w. @ - a @  d$!f 

The governing equation is 

Case 4. The upstream conditions are u = u = 0, and w = 1 -r2. Therefore 

y9- = +r2-$r4, f ( + )  = 0 and H ( $ )  = &w2 = + - 2 $ .  

The governing equation is 

The boundary conditions are the same for all the above equations. They are 

q9 = 0  at  r = O  and r 2 + z 2 = R 2 ,  

$ = const. at r = 1. 

3. Method of solution 
With a view to satisfying the boundary conditions at r = 0 and r = 1, we can 

write the solutions for the equations (16), (17) and (18) all in the same form: 
a, 

@- = +,+ C AneknerJl(Anr) for z < 0, 

$, = $,+ B,e-’C.ZrJ,(A,r) for z > 0, 

n = l  

W 

n=l 

In equations (19) and (ZO), J1 is the Bessel function of the first order and first 
kind and A, are the roots of J,(A) = 0. For case ( 1 )  

$o=&r2W and & = A n ;  
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for case ( 2 )  = ir2W and k, = (A: - a,)* (a < Al); 
for case (3) $,, = &rz W and k, = (A: - a2)i (A, < a < AN+l); 

and for case (4) = $rz-$r4  and X;, = A,. 

In  cases (l), ( 2 )  and (4), k, are positive and real; therefore there are no waves. 
The coefficients A ,  and B, are determined by demanding that 

$-=I+++ at x = O ,  (21) 

a@-jaz - a@+laz = f ( r )  at z = 0, (22) 

in which f ( r )  = 0 for r 2 s, where s is some positive constant smaller than R 
(radius of the sphere). Since $- and $+ satisfy the governing equation, (21) and 
(23) ensure that $+ is the analytic continuation of @-, and there are no singu- 
larities in the domain outside of the sphere. 

Equation (21) demands that 

and from equation ( 2 2 ) ,  we obtain 
An = Bn, (23) 

(24) 

I n  case (3), k,, k,, . . . , kN are imaginary; therefore, there are N wave components 
in the solution. If we demand that there be no waves upstream, an assumption 
analogous to that made in the classical theory of surface waves (Rayleigh 
1883), then 

m 

$- = +Wr2+ 3 Ane+knBrJl(A,r) for z < 0, ( 2 5 )  
N+1 

iv 

n = l  
$+ = + Wr2 + 2; (B, cos a,x + C, sin a, z )  rJl(Anr) 

m 

+ 2; Dne-k@rJl(A,r) for z > 0,  (36) 
1v+1 

where a,, = (a2-x;)i. 

Equation (21) demands that 

(39) 

The C, are the amplitudes of the N-wave components and the corresponding wave 
lengths are 37r/a,. Since there are infinitely many functions f ( r )  that will give 
the same (7,’s from equation (30), and since different f(r) ’s generate different 
shapes of the obstacle, for the same Rossby number, the amplitudes and wave- 
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lengths of the lee waves do not depend on the detailed shape of the obstacle but 
on certain integrals of the singularity function generating the obstacle. Near the 
obstacle, however, the flow depends on all the Fourier coefficients of f ( r )  and is 
therefore greatly affected by the shape of the obstacle. 

It should be remarked that Squire (1955) has pointed out that equation (15) 
suggests two main possibilities for aR + 00. The first possibility is that the azi- 
muthal component of vorticity increases with crR, no matter how large the 
value of aR; this permits the existence of a uniform flow far upstream. The 
second possibility is that the azimuthal component of vorticity remains bounded 
when aR becomes sufficiently large; in this case equation (15) shows that the 
stream function is approximately a function only of radial distance from the axis 
so that the flow is cylindrical and uniform flow far upstream is impossible. 
Taylor’s experiments indicate that the second alternative is the one found in 
practice for sufficiently large aR; hence the present solutions apply only for a 
limited range of aR. The upper limit of this range, where flow with no disturbances 
far upstream begins to give way to cylindrical flow (the ‘Taylor column’ pheno- 
menon), is as yet unknown; for a real fluid this upper limit is probably a function 
of diameter ratio, and of Reynolds number. 

4. The general function f ( r )  

It should be pointed out that there is no a priori reason for a function (or 
functions) generating a sphere exactly to exist. What we attempt here is to 
find a function which will generate an obstacle as close to a sphere as possible. 

Two things are considered in the choice of such a function. (1)  It should allow 
the Fourier coef- ients to be obtained without much effort. (2) It should allow 
ample latitude for  improving the results. With these considerations in mind, 
the following is chosen as the generating function 

f ( r )  = Gl + G,r2 + G,r4 for 0 < r < s, 

= o  for r 3 s. (31) 
Since G, + Gzs2 + G3s4 = 0, only three of the four constants (Gl, G,, 6, and s) 
can be varied independently. It appears therefore, that we can only make three 
points on the sphere satisfy the condition $ = 0. It turns out however that, if 
the three points are properly chosen, this particular form of generating function 
will generate an obstacle whose shape is only slightly different from that of a 
sphere (see figures 1-4). With the help of a computer, little effort is required in 
the trial process. 

With the generating function given by (31), the coefficients A ,  and C, are 
given by A ,  = 1[G,D,(n) + GzDzln) + G ~ D 3 ( n ) l ~ ~ ~ ~ J 2 ( A , ) l z ,  

cr, = - 2[G,D,(n) + Q2Dz(n) + G303(n)l/a,[Jz(h,)12, 
133) 
(33) 

where D1(n) = -JO(A,s)/A,+ Dz(n)  = s2Jz(h,s)/A,7 

2s4Jz(A,s) 8s3J3(h,s) s4J4(A,s) 
A, A;, A n  

+------. D3(n)  = ____ _-____. 

Four flow patterns are given at the end of this paper; each represents one of the 
four cases. Numerical results are given in the next section. 
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FIGURE 1. Flow pattern for irrotational flow past a sphere inside a pipe 
of radius 1. Radius of sphere = 0.5. 

0.50 
0.45 
04- 
0.35 
03c 

FIGURE 2. Flow pattern for swirling flow past a sphere inside a pipe of 
radius 1. Rossby number = Q. Radius of sphere = 0.5. 

FIGURE 3. Flow pattern for swirling flow past a sphere inside a pipe of 
radius 1. Rossby number = f. Radius of sphere = 0.4. 
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FIGURE 4. Flow pattern for rotational flow past a sphere inside a pipe 
of radius 1. w = 1 - r2 upstream. Radius of sphere = 0.5. 

5. Numerical results 

For simplicity, W is taken to be unity for cases ( l ) ,  (2) and (3). For case (4), 
w, = 1 - r2 ,  and the maximum velocity at far upstream is also equal to unity. 
This amounts to making all the velocities dimensionless through division by 

Figure 1 is for irrotational flow. The ratio of the diameter of the sphere to that 
(WuJ)rnlm.- 

of the pipe is 0.5. The generating function is 
f ( r )  = 33.90(700-4r4+2.0r2-0~8) for 0 < r < 0.18, 

= o  for r 2 0.18. 

Figure 2 is for swirling flow with Rossby number equal to Q, which is larger 
than the critical number l /Al .  There is no wave in the lee of the sphere. The ratio 
of the diameters is 0.5, and 

f(r) = 3-697(202.3r4 + 2 . 0 ~ ~  - 1.4) for 0 < r < 0.28, 

= o  for r >, 0.28. 

Figure 3 is for swirling flow with Rossby number equal to 114.5, which is 
smaller than the critical number. There is one lee-wave component in the lee 
of the sphere. The ratio of the diameters is 0-4 and 

f ( r )  = 13.46(137.2r4+2.0r2- 1.0) for 0 < r < 0.28, 

= o  for r >, 0.28. 

Figure 4 is for rotational flow with a paraboloidal velocity distribution far 
upstream. The diameter ratio is 0.5 and 

f(r) = 100.3(7800r4+ 2.0r2-0.8) for 0 < r < 0.10, 

= o  for r 0.10. 
38 Fluid Mech. 18 
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It should be remarked that the flow pattern given in the eddy region of figure 3 
cannot be taken seriously because the flow in that region does not originate at  
infinity and therefore is not governed by equation (17). In  fact, so long as vis- 
cosity is taken to be exactly zero, no unique flow can be obtained for that region. 
It is worth-while to mention that in the case of vanishingly small viscosity 
Batchelor (1956) has shown that for rotationally symmetric flow, provided the 
streamlines of the components of velocity in the axial plane are not bounded 
internally by a solid boundary or a singular surface (which is true in our case), 
the flow in the 'inviscid core' inside the eddy is governed by the equations 
rj/r = a and rv = p. The constants a and /3, however, have to be determined by 
the need for steadiness in the viscous boundary layer surrounding the eddy. 
Furthermore, the possible existence of a succession of small eddies of diminishing 
size at the 90" corners will give rise to some difficulty in the determination of the 
shape of the singular surface surrounding the inviscid core. 

Theauthor wishes to thank Professor C.-S. Yih for his suggestion of the 
method. 
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